skip to content
Latent Markov models for longitudinal data Preview this item
ClosePreview this item

Latent Markov models for longitudinal data

Author: Francesco Bartolucci; Alessio Farcomeni; Fulvia Pennoni
Publisher: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2013]
Series: Statistics in the social and behavioral sciences series.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Summary:
"Preface. Latent Markov models represent an important class of latent variable models for the analysis of longitudinal data, when the response variables measure common characteristics of interest which are not directly observable. Typically, the response variables are categorical, even if nothing precludes that they have a different nature. These models find application in many relevant fields, such as educational  Read more...
You are not connected to the University of Washington Libraries network. Access to online content and services may require you to authenticate with your library. OffCampus Access (log in)
Getting this item's online copy... Getting this item's online copy...

Find a copy in the library

Getting this item's location and availability... Getting this item's location and availability...

WorldCat

Find it in libraries globally
Worldwide libraries own this item

Details

Document Type: Book
All Authors / Contributors: Francesco Bartolucci; Alessio Farcomeni; Fulvia Pennoni
ISBN: 9781439817087 1439817081
OCLC Number: 798809732
Description: xix, 234 pages ; 24 cm.
Contents: Overview on Latent Markov Modeling Introduction Literature review on latent Markov models Alternative approaches Example datasets Background on Latent Variable and Markov Chain Models Introduction Latent variable models Expectation-Maximization algorithm Standard errors Latent class model Selection of the number of latent classes Applications Markov chain model for longitudinal data Applications Basic Latent Markov Model Introduction Univariate formulation Multivariate formulation Model identifiability Maximum likelihood estimation Selection of the number of latent states Applications Constrained Latent Markov Models Introduction Constraints on the measurement model Constraints on the latent model Maximum likelihood estimation Model selection and hypothesis testing Applications Including Individual Covariates and Relaxing Basic Model Assumptions Introduction Notation Covariates in the measurement model Covariates in the latent model Interpretation of the resulting models Maximum likelihood estimation Observed information matrix, identifiability, and standard errors Relaxing local independence Higher order extensions Applications Including Random Effects and Extension to Multilevel Data Introduction Random-effects formulation Maximum likelihood estimation Multilevel formulation Application to the student math achievement dataset Advanced Topics about Latent Markov Modeling Introduction Dealing with continuous response variables Dealing with missing responses Additional computational issues Decoding and forecasting Selection of the number of latent states Bayesian Latent Markov Models Introduction Prior distributions Bayesian inference via reversible jump Alternative sampling Application to the labor market dataset Appendix: Software List of Main Symbols Bibliography Index
Series Title: Statistics in the social and behavioral sciences series.
Responsibility: Francesco Bartolucci, Alessio Farcomeni, Fulvia Pennoni.

Abstract:

"Preface. Latent Markov models represent an important class of latent variable models for the analysis of longitudinal data, when the response variables measure common characteristics of interest which are not directly observable. Typically, the response variables are categorical, even if nothing precludes that they have a different nature. These models find application in many relevant fields, such as educational and health sciences, when the latent characteristics correspond, for instance, to a certain type of ability or to the quality-of-life. Important applications are also in the study of certain human behaviors which are relevant for social and economic research. The main feature that distinguishes latent Markov models from other models for longitudinal data is that the individual characteristics of interest, and their evolution in time, are represented by a latent process which follows a Markov chain. This implies that we are in the field of discrete latent variable models, where the latent variables may assume a finite number of values. Latent Markov models are then strongly related to the latent class model, which is an important tool for classifying a sample of subjects on the basis of a series of categorical response variables. The latter model is based on a discrete latent variable, the different values of which correspond to different subpopulations (named latent classes) having a common distribution about the response variables. The latent Markov model may be seen as an extension of the latent class model in which subjects are allowed to move between the latent classes during the period of observation"--
Retrieving notes about this item Retrieving notes about this item

Reviews

User-contributed reviews
Retrieving GoodReads reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.