skip to content
Singular traces : theory and applications Preview this item
ClosePreview this item

Singular traces : theory and applications

Author: Steven Lord; F A Sukochev; Dmitriy Zanin
Publisher: Berlin : De Gruyter, [2013]
Series: De Gruyter studies in mathematics, 46.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Summary:
"This book is the first complete study and monograph dedicated to singular traces. The text mathematically formalises the study of traces in a self contained theory of functional analysis. Extensive notes will treat the historical development. The final section will contain the most complete and concise treatment known of the integration half of Connes' quantum calculus. Singular traces are traces on ideals of  Read more...
You are not connected to the University of Washington Libraries network. Access to online content and services may require you to authenticate with your library. OffCampus Access (log in)
Getting this item's online copy... Getting this item's online copy...

Find a copy in the library

Getting this item's location and availability... Getting this item's location and availability...

WorldCat

Find it in libraries globally
Worldwide libraries own this item

Details

Document Type: Book
All Authors / Contributors: Steven Lord; F A Sukochev; Dmitriy Zanin
ISBN: 9783110262506 3110262509
OCLC Number: 816818801
Description: xvi, 452 pages : illustrations ; 25 cm.
Contents: Preliminary Material. What is a Singular Trace? ; Preliminaries on Symmetric Operator Spaces. --
General Theory. Symmetric Operator Spaces ; Symmetric Functionals ; Commutator Subspace ; Dixmier Traces. --
Traces on Lorentz Ideals. Lidskii Formulas for Dixmier Traces on Lorentz Ideals ; Heat Kernel Formulas and -function Residues ; Measurability in Lorentz Ideals. --
Applications to Noncommutative Geometry. Preliminaries to the Applications ; Trace Theorems ; Residues and Integrals in Noncommutative Geometry. --
Operator Results.
Series Title: De Gruyter studies in mathematics, 46.
Responsibility: Steven Lord, Fedor Sukochev, Dmitriy Zanin.

Abstract:

"This book is the first complete study and monograph dedicated to singular traces. The text mathematically formalises the study of traces in a self contained theory of functional analysis. Extensive notes will treat the historical development. The final section will contain the most complete and concise treatment known of the integration half of Connes' quantum calculus. Singular traces are traces on ideals of compact operators that vanish on the subideal of finite rank operators. Singular traces feature in A. Connes' interpretation of noncommutative residues. Particularly the Dixmier trace, which generalises the restricted Adler-Manin-Wodzicki residue of pseudo-differential operators and plays the role of the residue for a new catalogue of 'geometric' spaces, including Connes-Chamseddine standard models, Yang-Mills action for quantum differential forms, fractals, isospectral deformations, foliations and noncommutative index theory. The theory of singular traces has been studied after Connes' application to non-commutative geometry and physics by various authors. Recent work by Nigel Kalton and the authors has advanced the theory of singular traces. Singular traces can be equated to symmetric functionals of symmetric sequence or function spaces, residues of zeta functions and heat kernel asymptotics, and characterised by Lidksii and Fredholm formulas. The traces and formulas used in noncommutative geometry are now completely understood in this theory, with surprising new mathematical and physical consequences. For mathematical readers the text offers fundamental functional analysis results and, due to Nigel Kalton's contribution, a now complete theory of traces on compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and access to the deeper mathematical features of traces on ideals associated to the harmonic sequence. These features, not known and not discussed in general texts on noncommutative geometry, are undoubtably physical and probe to the fascinating heart of classical limits and quantization."--Publisher's website.
Retrieving notes about this item Retrieving notes about this item

Reviews

User-contributed reviews
Retrieving GoodReads reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.