Thermonuclear reactions in stars (Libro, 2006) [University of Washington Libraries]
omitir hasta el contenido
Thermonuclear reactions in stars Ver este material de antemano
CerrarVer este material de antemano

Thermonuclear reactions in stars

Autor: C Iliadis
Editorial: Weinheim : Wiley-VCH, 2006.
Edición/Formato:   Libro impreso : Inglés (eng)
Resumen:

Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these  Leer más

Consiguiendo una copia en línea de este material… Consiguiendo una copia en línea de este material…

Encontrar un ejemplar en la biblioteca

Obtener la ubicación y disponibilidad de este material… Obtener la ubicación y disponibilidad de este material…

WorldCat

Encontrarlo en una biblioteca por todo el mundo
Bibliotecas por todo el mundo tienen este material

Detalles

Tipo de documento Libro
Todos autores / colaboradores: C Iliadis
ISBN: 3527406026 9783527406029
Número OCLC: 70677606
Descripción: approximately 450 pages : 160 illustrations (10 color)
Contenido: Preface. 1 Aspects of Nuclear Physics and Astrophysics. 1.1 History. 1.2 Nomenclature. 1.3 Solar System Abundances. 1.4 Astrophysical Aspects. 1.4.1 General Considerations. 1.4.2 Hertzsprung-Russell Diagram. 1.4.3 Stellar Evolution of Single Stars. 1.4.4 Binary Stars. 1.5 Masses, Binding Energies, Nuclear Reactions, and Related Topics. 1.5.1 Nuclear Mass and Binding Energy. 1.5.2 Energetics of Nuclear Reactions. 1.5.3 Atomic Mass and Mass Excess. 1.5.4 Number Abundance, Mass Fraction, and Mole Fraction. 1.5.5 Decay Constant, Mean Lifetime, and Half-Life. 1.6 Nuclear Shell Model. 1.6.1 Closed Shells and Magic Numbers. 1.6.2 Nuclear Structure and Nucleon Configuration. 1.7 Nuclear Excited States and Electromagnetic Transitions. 1.7.1 Energy, Angular Momentum, and Parity. 1.7.2 Transition Probabilities. 1.7.3 Branching Ratio and Mixing Ratio. 1.7.4 Gamma-Ray Transitions in a Stellar Plasma. 1.7.5 Isomeric States and the Case of <sup>26</sup>Al. 1.8 Weak Interaction. 1.8.1 Weak Interaction Processes. 1.8.2 Energetics. 1.8.3 Beta-Decay Probabilities. 1.8.4 Beta-Decays in a Stellar Plasma. 2 Nuclear Reactions. 2.1 Cross Sections. 2.2 Reciprocity Theorem. 2.3 Elastic Scattering and Method of Partial Waves. 2.3.1 General Aspects. 2.3.2 Relationship Between Differential Cross Section and Scattering Amplitude. 2.3.3 The Free Particle. 2.3.4 Turning the Potential On. 2.3.5 Scattering Amplitude and Elastic Scattering Cross Section. 2.3.6 Reaction Cross Section. 2.4 Scattering by Simple Potentials. 2.4.1 Square-Well Potential. 2.4.2 Square-Barrier Potential. 2.4.3 Transmission Through the Coulomb Barrier. 2.5 Theory of Resonances. 2.5.1 General Aspects. 2.5.2 Logarithmic Derivative, Phase Shift, and Cross Section. 2.5.3 Breit-Wigner Formulas. 2.5.4 Extension to Charged Particles and Arbitrary Values of Orbital Angular Momentum. 2.5.5 R-Matrix Theory. 2.5.6 Experimental Tests of the One-Level Breit-Wigner Formula. 2.5.7 Partial and Reduced Widths. 2.6 Continuum Theory. 2.7 Hauser-Feshbach Theory. 3 Thermonuclear Reactions. 3.1 Cross Sections and Reaction Rates. 3.1.1 Particle-Induced Reactions. 3.1.2 Photon-Induced Reactions. 3.1.3 Abundance Evolution. 3.1.4 Forward and Reverse Reactions. 3.1.5 Reaction Rates at Elevated Temperatures. 3.1.6 Reaction Rate Equilibria. 3.1.7 Nuclear Energy Generation. 3.2 Nonresonant and Resonant Thermonuclear Reaction Rates. 3.2.1 Nonresonant Reaction Rates for Charged-Particle-Induced Reactions. 3.2.2 Nonresonant Reaction Rates for Neutron-Induced Reactions. 3.2.3 Nonresonant Reaction Rates for Photon-Induced Reactions. 3.2.4 Narrow-Resonance Reaction Rates. 3.2.5 Broad-Resonance Reaction Rates. 3.2.6 Electron Screening. 3.2.7 Total Reaction Rates. 4 Nuclear Physics Experiments. 4.1 General Aspects. 4.1.1 Charged-Particle Beams. 4.1.2 Neutron Beams. 4.2 Interaction of Radiation with Matter. 4.2.1 Interactions of Heavy Charged Particles. 4.2.2 Interactions of Photons. 4.2.3 Interactions of Neutrons. 4.3 Targets and Related Equipment. 4.3.1 Backings. 4.3.2 Target Preparation. 4.3.3 Contaminants. 4.3.4 Target Chamber and Holder. 4.4 Radiation Detectors. 4.4.1 General Aspects. 4.4.2 Semiconductor Detectors. 4.4.3 Scintillation Detectors. 4.4.4 Proportional Counters. 4.4.5 Microchannel Plate Detectors. 4.5 Nuclear Spectroscopy. 4.5.1 Charged-Particle Spectroscopy. 4.5.2 Gamma-Ray Spectroscopy. 4.5.3 Neutron Spectroscopy. 4.6 Miscellaneous Experimental Techniques. 4.6.1 Radioactive Ion Beams. 4.6.2 Activation Method. 4.6.3 Time-of-Flight Technique. 4.7 Background Radiation. 4.7.1 General Aspects. 4.7.2 Background in Charged-Particle Detector Spectra. 4.7.3 Background in α-Ray Detector Spectra. 4.7.4 Background in Neutron Detector Spectra. 4.8 Yields and Cross Sections for Charged-Particle-Induced Reactions. 4.8.1 Nonresonant and Resonant Yields. 4.8.2 General Treatment of Yield Curves. 4.8.3 Measured Yield Curves and Excitation Functions. 4.8.4 Determination of Absolute Resonance Strengths and Cross Sections. 4.9 Transmissions, Yields, and Cross Sections for Neutron-Induced Reactions. 4.9.1 Resonance Transmission. 4.9.2 Resonant and Nonresonant Yields. 4.9.3 Effective Cross Section. 4.9.4 Measured Yields and Transmissions. 4.9.5 Relative and Absolute Cross Sections. 5 Nuclear Burning Stages and Processes. 5.1 Hydrostatic Hydrogen Burning. 5.1.1 pp Chains. 5.1.2 CNO Cycles. 5.1.3 Hydrostatic Hydrogen Burning Beyond the CNO Mass Region. 5.2 Explosive Hydrogen Burning. 5.2.1 Hot CNO Cycles. 5.2.2 Explosive Hydrogen Burning Beyond the CNO Mass Region. 5.3 Hydrostatic Helium Burning. 5.3.1 Helium-Burning Reactions. 5.3.2 Nucleosynthesis During Hydrostatic He Burning. 5.3.3 Other Helium-Burning Reactions. 5.4 Explosive Hydrogen-Helium Burning. 5.4.1 Breakout from the HCNO Cycles. 5.4.2 Network Calculations at Constant Temperature and Density. 5.4.3 Nucleosynthesis for Temperature-Density Profiles. 5.5 Advanced Burning Stages. 5.5.1 Carbon Burning. 5.5.2 Neon Burning. 5.5.3 Oxygen Burning. 5.5.4 Silicon Burning. 5.5.5 Nuclear Statistical Equilibrium and Freeze-Out. 5.6 Nucleosynthesis Beyond the Iron Peak. 5.6.1 The s-Process. 5.6.2 The r-Process. 5.6.3 The p-Process. 5.7 Origin of the Solar System Nuclides. Appendix. A Solutions of the Schrodinger Equation in Three Dimensions. A.1 Zero Orbital Angular Momentum and Constant Potential. A.2 Arbitrary Orbital Angular Momentum and Zero Potential. A.3 Arbitrary Orbital Angular Momentum and Coulomb Potential. B Quantum Mechanical Selection Rules. C Kinematics. C.1 Relationship of Kinematic Quantities in the Laboratory Coordinate System. C.2 Transformation Between Laboratory and Center-of-Mass Coordinate System. D Angular Correlations. D.1 General Aspects. D.2 Pure Radiations in a Two-Step Process. D.3 Mixed Radiations in a Two-Step Process. D.4 Three-Step Process with Unobserved Intermediate Radiation. D.5 Experimental Considerations. D.6 Concluding Remarks. E Constants, Data, Units, and Notation. E.1 Physical Constants and Data. E.2 Mathematical Expressions. E.3 Prefixes and Units. E.4 Physical Quantities. Color Plates. References. Index.
Responsabilidad: C. Iliadis.
Recuperando notas sobre este material Recuperando notas sobre este material

Reseñas

Reseñas editoriales

Resumen de la editorial

"This well-priced book's ability to both spark and feed readers' interest in astrophysics makes it an effective teaching resource and a valuable addition..." (CHOICE, December 2007)

 
Reseñas contribuidas por usuarios

Etiquetas

Ser el primero.

Materiales similares

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.